Effect of Methanol Extract of Costus lucanusianus Root on Oxidative Stress, Liver Function and Haematological Markers in Malaria-infected Wistar Mice

Authors

  • Ezerioha CE University of Port Harcourt image/svg+xml Author
    • Kagbo HD Author
      • Isirima JC Author
        • Chidi-Ezerioha PA Author

          DOI:

          https://doi.org/10.4314/ajtmbr.v8i1.7

          Keywords:

          Wistar mice, Haematological parameters, Malaria, Costus lucanusianus, Oxidative stress, Liver function

          Abstract

          Background:
          Malaria is associated with oxidative stress, haematological alterations, and organ damage. Costus lucanusianus is traditionally used in the management of fever, but its antimalarial potential is not well established.

          Materials and Methods:
          The methanol root extract of C. lucanusianus was evaluated in Plasmodium berghei-infected mice using the 4-day suppressive test. Acute toxicity (Lorke’s method), parasitemia suppression, survival time, haematological indices, oxidative stress markers, liver function tests, and histopathology were assessed.

          Results:
          The extract was safe up to 5000 mg/kg. It produced dose-dependent parasite suppression, with 500 mg/kg achieving 50% inhibition, though less effective than chloroquine (62.5%). Treated mice showed prolonged survival, improved antioxidant enzyme activity, and reduced lipid peroxidation. Haematological parameters indicated increased WBC and platelet counts with reduced neutrophils. Liver function markers remained largely stable, while histopathology showed milder hepatic distortion compared to untreated controls.

          Conclusion:
          Costus lucanusianus root extract demonstrates significant antimalarial, antioxidant, and immunomodulatory activities, supporting its ethnomedicinal use and potential as a source for new antimalarial agents

          References

          1. Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. *Oxid Med Cell Longev.* 2014;2014:360438.

          2. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al. Oxidative stress, aging, and diseases. *Clin Interv Aging.* 2018;13:757–72. Available from: [https://pmc.ncbi.nlm.nih.gov/articles/PMC5927356/](https://pmc.ncbi.nlm.nih.gov/articles/PMC5927356/)

          3. Lingappan K. NF-κB in oxidative stress. *Curr Opin Toxicol.* 2018;7:81–6.

          4. Ty MC, Zuniga M, Götz A, Kayal S, Sahu PK, Mohanty A, et al. Malaria inflammation by xanthine oxidase-produced reactive oxygen species. *EMBO Mol Med.* 2019;11(8):e10014.

          5. Vasquez M, Zuniga M, Rodriguez A. Oxidative stress and pathogenesis in malaria. *Front Cell Infect Microbiol.* 2021;11:780827.

          6. Kavishe RA, Koenderink JB, Alifrangis M. Oxidative stress in malaria and artemisinin combination therapy: pros and cons. *FEBS J.* 2017;284(16):2579–91.

          7. Khattak AA, Venkatesan M, Nadeem MF, Satti HS, Yaqoob A, Strauss K, et al. Prevalence and distribution of human *Plasmodium* infection in Pakistan. *Malar J.* 2013;12:297.

          8. Mutala AH, Badu K, Owusu C, Agordzo SK, Tweneboah A, Abbas DA, et al. Impact of malaria on haematological parameters of urban, peri-urban and rural residents in the Ashanti region of Ghana: a cross-sectional study. *AAS Open Res.* 2020;2:27.

          9. Atanu FO, Rotimi D, Ilesanmi OB, Al Malki JS, Batiha GE, Idakwoji PA. Hydroethanolic extracts of *Senna alata* leaves possess antimalarial effects and reverse haematological and biochemical perturbation in *Plasmodium berghei*-infected mice. *J Evid Based Integr Med.* 2022;27:2515690X2211164.

          10. Kaeley N, Ahmad S, Shirazi N, Bhatia R, Bhat NK, Srivastava S, et al. Malarial hepatopathy: a 6-year retrospective observational study from Uttarakhand, North India. *Trans R Soc Trop Med Hyg.* 2017;111(5):220–5.

          11. Agbor GA, Kuiaté JR, Sangiovanni E, Ojo OO. The role of medicinal plants and natural products in modulating oxidative stress and inflammatory related disorders, volume II. *Front Pharmacol.* 2023;14:PMC10641841. Available from: [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641841/](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641841/)

          12. Owolabi OJ, Nworgu ZA. Anti-inflammatory and anti-nociceptive activities of *Costus lucanusianus* (Costaceae). *Pharmacologyonline.* 2009;1:1230–8. Available from: [https://www.researchgate.net/publication/290535384_Anti-inflammatory_and_anti-nociceptive_activities_of_Costus_lucanusianus_Costaceae](https://www.researchgate.net/publication/290535384_Anti-inflammatory_and_anti-nociceptive_activities_of_Costus_lucanusianus_Costaceae)

          13. Lorke D. A new approach to practical acute toxicity testing. *Arch Toxicol.* 1983;54(4):275–87.

          14. Peters W. Rational methods in the search for antimalarial drugs. *Trans R Soc Trop Med Hyg.* 1967;61:400–10.

          15. Gad SC. *Animal models in toxicology.* CRC Press eBooks. Informa; 2015.

          16. Waako PJ, Gumede B, Smith P, Folb PI. The in vitro and in vivo antimalarial activity of *Cardiospermum halicacabum* L. and *Momordica foetida* Schumch. et Thonn. *J Ethnopharmacol.* 2005;99(1):137–43.

          17. Erhirhie EO, Ihekwereme CP, Ilodigwe EE. Advances in acute toxicity testing: strengths, weaknesses and regulatory acceptance. *Interdiscip Toxicol.* 2018;11(1):5–12. Available from: [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6117820/](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6117820/)

          18. Peters W, Portus JH, Robinson BL. The chemotherapy of rodent malaria, XXII. *Ann Trop Med Parasitol.* 1975;69(2):155–71.

          19. Afshar FH, Delazar A, Asnaashari S, Vaez H, Zolali E, Asgharian P. Screening of anti-malarial activity of different extracts obtained from three species of *Scrophularia* growing in Iran. *Iran J Pharm Res.* 2018;17(2):668. Available from: [https://pmc.ncbi.nlm.nih.gov/articles/PMC5985184/](https://pmc.ncbi.nlm.nih.gov/articles/PMC5985184/)

          20. Uzor PF, Onyishi CK, Omaliko AP, Nworgu SA, Ugwu OH, Nwodo NJ. Study of the antimalarial activity of the leaf extracts and fractions of *Persea americana* and *Dacryodes edulis* and their HPLC analysis. *Evid Based Complement Alternat Med.* 2021;2021:e5218294. Available from: [https://www.hindawi.com/journals/ecam/2021/5218294/](https://www.hindawi.com/journals/ecam/2021/5218294/)

          21. Kotepui M, Phunphuech B, Phiwklam N, Chupeerach C, Duangmano S. Effect of malarial infection on haematological parameters in population near Thailand–Myanmar border. *Malar J.* 2014;13:123.

          22. Maina RN, Walsh D, Gaddy C, Hongo G, Waitumbi J, Otieno L, et al. Impact of *Plasmodium falciparum* infection on haematological parameters in children living in Western Kenya. *Malar J.* 2010;9(Suppl 3):S3.

          23. Kotepui M, Piwkham D, PhunPhuech B, Phiwklam N, Chupeerach C, Duangmano S. Effects of malaria parasite density on blood cell parameters. *PLoS One.* 2015;10(3):e0121057.

          24. Bethell D, Se Y, Lon C, Socheat D, Saunders D, Teja-Isavadharm P, et al. Dose-dependent risk of neutropenia after 7-day courses of artesunate monotherapy in Cambodian patients with acute *Plasmodium falciparum* malaria. *Clin Infect Dis.* 2010;51(12):e105–14.

          25. Zwang J, Ndiaye JL, Djimdé A, Dorsey G, Mårtensson A, Karema C, et al. Comparing changes in haematologic parameters occurring in patients included in randomized controlled trials of artesunate–amodiaquine vs single and combination treatments of uncomplicated *falciparum* in sub-Saharan Africa. *Malar J.* 2012;11:1.

          26. Nneji CM, Adaramoye OA, Falade CO, Ademowo OG. Effect of chloroquine, methylene blue and artemether on red cell and hepatic antioxidant defence system in mice infected with *Plasmodium yoelii nigeriensis.* *Parasitol Res.* 2013;112(7):2619–25.

          27. Megabiaw F, Eshetu T, Kassahun Z, Aemero M. Liver enzymes and lipid profile of malaria patients before and after antimalarial drug treatment at Dembia Primary Hospital and Teda Health Center, Northwest, Ethiopia. *Res Rep Trop Med.* 2022;13:11–23. Available from: [https://www.dovepress.com/liver-enzymes-and-lipid-profile-of-malaria-patients-before-and-after-a-peer-reviewed-fulltext-article-RRTM](https://www.dovepress.com/liver-enzymes-and-lipid-profile-of-malaria-patients-before-and-after-a-peer-reviewed-fulltext-article-RRTM)

          Effect of Methanol Extract of Costus lucanusianus Root on Oxidative Stress, Liver Function and Haematological Markers in Malaria-infected Wistar Mice

          Downloads

          Published

          02-06-2025

          Data Availability Statement

          The data supporting the findings of this study are available from the corresponding author upon reasonable request.

          How to Cite

          1.
          Ezerioha C, Kagbo, Isirima, Chidi-Ezerioha PA. Effect of Methanol Extract of Costus lucanusianus Root on Oxidative Stress, Liver Function and Haematological Markers in Malaria-infected Wistar Mice. AJTMBR [Internet]. 2025 Jun. 2 [cited 2025 Oct. 26];8(1):91-102. Available from: https://www.ajtmbr.org.ng/index.php/home/article/view/v8i1-91-102